Recitation 5

September 24, 2015

Review

An $m \times n$ matrix A defines $A \colon \mathbb{R}^n \to \mathbb{R}^m$. The following are equivalent:

- A is onto;
- columns of A span \mathbb{R}^m ;
- system Ax = b has a solution (is consistent) for all b;
- every row of A has a pivotal position;

Once again, TFAE:

- A is one-to-one;
- Ax = Ay implies that x = y (i.e. A maps different vectors to different vectors);
- Ax = 0 has only the trivial solution (i.e. A doesn't kill any non-zero vectors);
- columns of A are linearly independent;
- every column of A is pivotal.

Standard matrix of T: see what T does to standard basis vectors e_1, \ldots, e_n . Then $A = [T(e_1) \ldots T(e_n)]$. So take e_1 , apply T, it gives a vector in \mathbb{R}^m , that's your first column, et.c.

Subspace: *H* is a vector space, and $V \subset H$ is as subset, and you want to know if *V* is a **subspace**. **All you need:** *V* is closed under + and scalar multiplication. I.e., take two $v, u \in V$, compute v + u, is it again in *V*? Take any $v \in V$ and any scalar $c \in \mathbb{R}$, compute cv. Is it again in *V*? If both times "yes", then *V* is a subspace. If one answer is "no", then *V* is not a subspace.

Basis: vectors v_1, \ldots, v_n in a vector space V for a **basis** if and only if

- v_1, \ldots, v_n are independent;
- v_1, \ldots, v_n span the whole V.

Basis for Col(A): pivotal columns of <u>A</u> form a basis of Col(A) (but **not!** the columns of the reduced form of <u>A</u>).

Basis for $Span(v_1, \ldots, v_n)$: it's the same as asking for a basis of Col(A) with $A = (v_1 \ldots v_n)$.

Basis for Nul(A): you need to solve Ax = 0. So do that. Some variables will be free, some not. Express the solution as a vector, substituting non-free variables in terms of free ones. Then plug in 1 for one of free variables, put rest 0. This gives a vector. Do that for all free variables, get a bunch of vectors. This would be a basis for Nul(A). Suppose for example you've got x_1, x_2 are non-free, x_3, x_4 are free, and suppose $x_1 = x_3 + x_4, x_2 = 2x_4$. There are two free variables, so there is two vectors in a basis for Nul(A). So solutions look like

$\begin{array}{c} x_3 + x_4 \\ 2x_4 \end{array}$		$v_1 =$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	a	$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	
x_3			1	$, v_2 -$	0	
x_4			0		1	

Put $x_3 = 1, x_4 = 0$ in the solution vector. This gives v_1 — the first basis vector for a basis. Put $x_3 = 0, x_4$, get v_2 — the second one. So a basis is $\{v_1, v_2\}$ as above.

Coordinates relative to a basis: Suppose v_1, \ldots, v_n is a basis of V, and b is any vector. To find **coordinates** of b you need to find scalars x_1, \ldots, x_n such that $x_1v_1 + \cdots + x_nv_n = b$. So really you **need to solve system of equations** Ax = b with $A = (v_1 \ldots v_n)$ (i.e. vectors v_i are columns of A).

Problems

Problem 1. Let $W \subset \mathbb{R}^3$ be the set of all vectors of the form $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ satisfying the property abc = 0. Is W a

subspace of \mathbb{R}^3 ?

Problem 2. Let $V \subset \mathbb{R}^3$ be the set of all vectors of the form $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ satisfying the property a + b + c = 0. Is

V a subspace of $\mathbb{R}^3?$

Problem 3. Let

$$v_1 = \begin{bmatrix} 1\\ -4\\ 1\\ 2 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1\\ 1\\ 0\\ -2 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -3\\ 0\\ 0\\ 3 \end{bmatrix}, \quad v_4 = \begin{bmatrix} -3\\ -1\\ 4\\ 0 \end{bmatrix}$$

Are these vectors linearly independent? Do they span \mathbb{R}^4 ? Find a basis for $Span(v_1, v_2, v_3, v_4)$.

Problem 4. Let $A = \begin{bmatrix} -2 & 3 & 4 \\ 4 & -2 & -6 \\ 1 & 0 & 0 \end{bmatrix}$. Do columns of A form a basis of \mathbb{R}^3 ? Is A onto? Is A one-to-one?

What is the space Col(A)? Is A invertible? Find inverse of A.

Problem 5. Let $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 7 & 1 \end{bmatrix}$. Find a basis for Col(A) and for Nul(A).

Problem 6. Let $A = \begin{bmatrix} 1 & 3 & -1 \end{bmatrix}$. It defines a linear transformation $\mathbb{R}^3 \to \mathbb{R}$. Find bases for Col(A) and Nul(A).

Problem 7. Does the set of vectors $\{v_1 = \begin{bmatrix} -1\\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 0\\ 2 \end{bmatrix}\}$ form a basis of \mathbb{R}^2 ? Compute coordinates of the vector $x = \begin{bmatrix} 2\\ 0 \end{bmatrix}$ relative to the basis $\{v_1, v_2\}$.

Problem 8. Find a basis \mathcal{B} for the space V from Problem 2 (hint: see Problem 6).

Compute the coordinates $[x]_{\mathcal{B}}$ of the vector $x = \begin{bmatrix} -3\\ 4\\ -1 \end{bmatrix}$ is this basis. How many entries does $[x]_{\mathcal{B}}$ have?

Problem 9. Define a transformation $T: \mathbb{P}_3 \to \mathbb{P}_2$ sending each polynomial **p** to its derivative **p**', i.e. $T(\mathbf{p}) = \mathbf{p}'$. For example, $T(x^2 - x) = 2x - 1$. Find the kernel of T and describe the range of T.

Problem 10. For the following statements, mark them "true" or "false" and explain your answer.

- 1. A single vector by itself is linearly dependent.
- 2. If $H = Span\{b_1, \ldots, b_n\}$ then $\{b_1, \ldots, b_n\}$ is a basis for H.
- 3. If $\mathbb{R}^n = Span\{b_1, \ldots, b_n\}$ then $\{b_1, \ldots, b_n\}$ is a basis for \mathbb{R}^n .
- 4. The columns of an invertible $n \times n$ matrix A form a basis of \mathbb{R}^n .
- 5. A basis is a spanning set that is as large as possible.
- 6. If B is an echelon form of a matrix A, then columns of B form a basis for Col(A).

Problem 11. Suppose v_1, v_2, v_3 are **dependent** vectors in \mathbb{R}^3 , and suppose $b \in Span(v_1, v_2, v_3)$ is a vector in their span. Prove that the vector b can be expressed as $b = x_1v_1 + x_2v_2 + x_3v_3$ in more than one way. Do the same but using a "pivot-involving" argument.